The evolution of the solutions
took decades.
Min Removed/Hr | Travel Distance (km) | Stops |
---|---|---|
1 | 0 (0%) | 0 (0%) |
5 | -0.4 (0%) | 0 (0%) |
10 | -1 (-4%) | 0 (0%) |
15 | -1.8 (-7.4%) | 0 (0%) |
20 | -2.9 (-10.8%) | 0 (0%) |
Abs. Bias | Travel Period Acc. | |
---|---|---|
Linear Interpolation | 5.9Km | 92% |
Mean Imputation | 1.9Km | 94% |
Time Window Imputation | 1.1Km | 92% |
Dynamic Time Warping-Based Multiple Imputation | .6Km | 95% |
Method | Abs Bias | Med Bias | TP Acc |
---|---|---|---|
LI | 9.4Km | −1.9Km | 94.40% |
MI | 10.9Km | 21.2Km | 95.20% |
TWI | 9.3Km | 13Km | 93.80% |
DTWBMI-LO | 0.2Km | 1.7Km | 96.00% |
Method | Abs Bias | Med Bias | TP Acc |
---|---|---|---|
LI | 0.0Km | 0.0Km | 100% |
MI | 5.5Km | 5.8Km | 100% |
TWI | 0.6Km | 0.1Km | 99.4% |
DTWBMI-LO | 0.0Km | 0.0Km | 99.8% |
Does it matter?
Day | Total Distance | Mean Distance/Trip | Total Travel Time | Trips |
---|---|---|---|---|
Sun | 23 km | 7 km | 28 min | 1.5 |
Fri | 63 km | 13 km | 66 min | 4.1 |
Day | Total Distance | Mean Distance/Trip | Total Travel Time | Trips |
---|---|---|---|---|
Sun | 28 km | 9 km | 34 min | 2.6 |
Fri | 51 km | 11 km | 60 min | 4.5 |
Day | Total Distance | Mean Distance/Trip | Total Travel Time | Trips |
---|---|---|---|---|
Sun | 30 km | 18 km | 31 min | 1.7 |
Fri | 44 km | 11 km | 48 min | 4.1 |
Day | Total Distance | Mean Distance/Trip | Total Travel Time | Trips |
---|---|---|---|---|
Sun | 34 km | 17 km | 34 min | 2.1 |
Fri | 39 km | 13 km | 27 min | 3.1 |
Total Distance | Trips | Total Time | |
---|---|---|---|
ODiN | 34Km | 2.1 | 34 min |
Listwise deletion | 23Km | 1.5 | 28 min |
Linear interpolation | 28Km | 2.6 | 34 min |
DTW imputation | 30Km | 1.7 | 31 min |
The missing data problem is a serious problem with data collected via a smartphone
There’s no fantastic existing methodology to correct for it
Dynamic Time Warping-Based Multiple Imputation might help, but has some problems
We do see meaningful differences between gap-filling methodologies, implying that it does matter
Imputing the gaps brings us closer to other data sources
A query is the trajectory with a gap
We need data to fill the gap from other (complete) trajectories
We calculate how similar trajectories are before and after the gap using Dynamic Time Warping
Dynamic Time Warping finds the path of best alignment between two series
There are lots of ways to specify its parameters
We selected a high-information and low-information variant to test on simulated data.
High-information specifies parameters that opt for closer matching to longer periods of data – optimal when there’s lots of overlapping data from individuals.
Low-information specifies parameters that are more lax and matches trajectories based on what occurred immediately before and after the gap.
Method | Abs Bias | Med Bias | TP Acc |
---|---|---|---|
LI | 0.8Km | 0Km | 93.00% |
MI | 0.9Km | 1.9Km | 93.00% |
TWI | 1.4Km | 0.2Km | 89.30% |
DTWBI | 0.5Km | 0Km | 95.00% |
DTWBMI-HI | 1.4Km | 0Km | 94.10% |
DTWBMI-LO | 0.7Km | 0Km | 95.70% |
Method | Abs Bias | Med Bias | TP Acc |
---|---|---|---|
LI | 5.4Km | −0.2Km | 92.90% |
MI | 1.4Km | 11.5Km | 94.50% |
TWI | 0.2Km | 3.3Km | 93.00% |
DTWBI | 3.4Km | 0Km | 96.50% |
DTWBMI-HI | 3.4Km | 0.1Km | 94.80% |
DTWBMI-LO | 1.9Km | 0.1Km | 95.60% |
Gap Length | Method | Abs Bias | Med Bias |
---|---|---|---|
1 hr | LI | 0.8Km | 0Km |
1 hr | DTWBMI-LO | 0.7Km | 0Km |
6 hrs | LI | 5.4Km | −0.2Km |
6 hrs | DTWBMI-LO | 1.9Km | 0.1Km |
12 hrs | LI | 9.4Km | −1.9Km |
12 hrs | DTWBMI-LO | 0.2Km | 1.7Km |
Day | Total Distance | Mean Distance/Trip | Total Travel Time | Trips |
---|---|---|---|---|
Sun | 23 km | 7 km | 28 min | 1.5 |
Mon | 22 km | 5 km | 34 min | 2.9 |
Tue | 33 km | 11 km | 42 min | 2.9 |
Wed | 40 km | 12 km | 46 min | 3.1 |
Thu | 43 km | 13 km | 56 min | 3.9 |
Fri | 63 km | 13 km | 66 min | 4.1 |
Sat | 59 km | 13 km | 67 min | 3.2 |
Day | Total Distance | Mean Distance/Trip | Total Travel Time | Trips |
---|---|---|---|---|
Sun | 28 km | 9 km | 28 min | 1.5 |
Mon | 49 km | 11 km | 34 min | 2.9 |
Tue | 45 km | 13 km | 42 min | 2.9 |
Wed | 54 km | 14 km | 46 min | 3.1 |
Thu | 56 km | 13 km | 56 min | 3.9 |
Fri | 51 km | 11 km | 66 min | 4.1 |
Sat | 49 km | 11 km | 67 min | 3.2 |
Day | Total Distance | Mean Distance/Trip | Total Travel Time | Trips |
---|---|---|---|---|
Sun | 34 km | 17 km | 34 min | 2.1 |
Mon | 34 km | 13 km | 26 min | 2.8 |
Tue | 37 km | 13 km | 27 min | 2.9 |
Wed | 35 km | 13 km | 27 min | 2.9 |
Thu | 36 km | 13 km | 27 min | 2.9 |
Fri | 39 km | 13 km | 27 min | 3.1 |
Sat | 38 km | 14 km | 28 min | 2.8 |
MASS · 23 June 2023 · Manchester University